Solve the following on a separate piece of paper using methods demonstrated in class. BE SURE TO SHOW <u>ALL WORK</u> IN ORDER TO RECEIVE FULL CREDIT – Use method for <u>METHOD FOR SOLVING WORD PROBLEMS</u>.

1. A student wearing frictionless in-line skates on a horizontal surface is pushed by a friend with a constant force of 45 N. How far must the student be pushed, starting from rest, so that her final kinetic energy is 352 J?

$$W = \Delta K$$

+ $ED = Kf - Ki$
(45N)D = 352J - OJ
D = 7.8m

2. A 2.0 x 10³ kg car accelerates from rest under the actions of two forces. One is the forward force of 1140 N provided by the traction between the wheels and the road. The other is a 950 N resistive force due to various frictional forces. Use the work-kinetic energy theorem to determine how far the car must travel for its speed to reach 2.0 m/s.

$$W_1 = +(140N) \cdot D$$
 $W = \Delta K$ $(140N)D - (950N)D = 4,000J - 0J$
 $W_2 = -(950N) \cdot D$ $W_1 + W_2 = K_f - K_i$ $(190N)D = 4,000J$
 $W_1 + W_2 = K_f - K_i$ $(190N)D = 4,000J$
 $W_1 + W_2 = K_f - K_i$ $(190N)D = 4,000J$

3. A 50.0 kg diver steps off a diving board and drops straight down into the water. The water provides an upward average net force of 1500 N. If the diver comes to rest 5.0 m below the water's surface, what is the distance between the diving board and the diver's stopping point?

The distance between the diving board and the diver s stopping point:

$$D=?$$
 (only gravity)

 $W=Kf-Ki$
 $W=Kf$

OF WATER